
Tranalyzer 2.0 – Documentation
Flow based forensic and network troubleshooting traffic analyzer

Torben Rühl
Stefan Burschka

CONTENTS CONTENTS

Contents
1 Introduction 1

1.1 Installing Tranalyzer2 . 1

2 Using Tranalyzer2 in a productive environment 4
2.1 Enabling/Disabling Plugins . 4
2.2 man page . 4
2.3 Invoking Tranalyzer . 4
2.4 Description of networkHeaders.h . 5
2.5 Description of packetCapture.h . 5
2.6 Description of tranalyzer.h . 6
2.7 Tranalyzer2 output . 9
2.8 Final Report . 10
2.9 Monitoring during runtime . 11
2.10 Cancellation of the sniffing process . 11

3 Plugins 12
3.1 Standard File Sink . 12
3.2 Text File Sink . 12
3.3 binaryToText.h . 12
3.4 Basic Flow Output . 13
3.5 Basic Layer 4 Statistics . 17
3.6 TCP Flags . 17
3.7 Aggregated TCP Anomaly Flags . 19
3.8 TCP States Analyzer . 20
3.9 ICMP Decoder . 21
3.10 Connection Counter . 23
3.11 Descriptive Statistics * . 23
3.12 N First Packet Signal * . 24
3.13 Packet Length and Inter-Arrival Time Histogram * . 24
3.14 MAC Recorder * . 26
3.15 Port-based Classifier * . 26
3.16 Protocol Statistics * . 26
3.17 I/O Buffer . 26

4 Creating a custom plugin 27
4.1 Preparation . 27
4.2 Accessible structures . 27
4.3 Important structures . 27
4.4 Generating output . 27
4.5 Writing repeated output . 33
4.6 Important notes . 33
4.7 Administrative functions . 33
4.8 Processing functions . 34
4.9 Timeout handlers . 36

5 Code segments 38
5.1 main.c . 38
5.2 packetCapture.c . 39

6 Glossary 40

a
Copyright c© 2013 by Tranalyzer Development Team

1 INTRODUCTION

1 Introduction
Tranalyzer2 is a lightweight flow generator and packet analyzer designed for simplicity, performance and scalability. The
program is written in C and built upon the libpcap library. It provides functionality to pre- and postprocess IPv4/IPv6
data into flows and enables a trained user to see anomalies and network defects even in very large datasets. It supports
analysis with special bit coded fields and generates statistics from key parameters of IPv4/IPv6 Tcpdump traces either
being live-captured from an Ethernet interface or one or several pcap files. The quantity of binary and text based output of
Tranalyzer2 depends on enabled modules, herein denoted as plugins. Hence, users have the possibility to tailor the output
according to their needs and developers can develop additional plugins independent of the functionality of other plugins.

1.1 Installing Tranalyzer2
1.1.1 Prerequisites

Do install libpcap, libpcap-dev, automake and libtool.

Ubuntu: sudo apt-get install libpcap-dev libpcap0.8 automake libtool

Red Hat and Fedora: sudo yum install libpcap-devel libpcap automake libtool

Suse: yast -i ./libpcap-dev.version.rpm or use yum as in Red Hat

Gentoo: You only need to install libpcap and automake version 1.11.1. If you already have an automake version higher
than 1.11.1 installed, then you need to install 1.11.1 and run the following commands as root in the following order):
export WANT_AUTOMAKE=1.11, env-update, source /etc/profile, autoreconf

Mac OS X: First you have to install Xcode1 after this the command line tools2 finally install Brew3. Then, run the
command brew install autoconf automake libtool

1.1.2 Compiling altogether

Tranalyzer is available via its Sourceforge project page: http://tranalyzer.sf.net and http://tranalyzer.com.
After download and extraction of the source files change to the root directory and type ./autogen.sh. This script executes
all necessary programs to configure and build the program and the standard plugins. If the full spectrum of Tranalyzer2
capability is required execute ./autogen_all.sh or assemble your own build file. It is also possible to install the core or
plugins separately. Just execute the autogen.sh script in the root folder of the plugin. The autogen_rall.sh script compiles
all plugins under your directory, even the ones you developed yourselves.
If you have an older version of autoconf installed on your system, modify configure.ac in each plugins folder and replace
the current version number with the one of your installation. You can get your version number by typing the command
autoconf -V. Always make sure that the /.tranalyzer/plugins directory does not contain old plugins, otherwise trana-
lyzer2 may crash. If uncertain invoke rm /.tranalyzer/plugins/*.so and all plugins will be deleted.

1.1.3 Install Tranalyzer2 in /usr/local/bin

In order to install Tranalyzer2 in the standard directory for system dependent binaries, execute the autogen script with
the option install. Tranalyzer is then accessible for all users from every directory by executing the following command:
tranalyzer. Note that root rights are required. Ask your system administrator to install Tranalyzer if e.g. company
policy does not grant general admin rights.

1Xcode is an IDE from Apple https://developer.apple.com/xcode/
2https://developer.apple.com/xcode/
3Brew is a packet manager for Mac OS X that can be found here: http://mxcl.github.com/homebrew/

1
Copyright c© 2013 by Tranalyzer Development Team

http://tranalyzer.sf.net
http://tranalyzer.com
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
http://mxcl.github.com/homebrew/

1.1 Installing Tranalyzer2 1 INTRODUCTION

1.1.4 PF_RING

Under certain circumstances e.g. large quantities of small packets, it the kernel might drop packets. This happens due to
the normal kernel dispatching which is known to be inefficient for packet capture operations. The capturing process can
be devised more efficiently by changing the kernel as in packet_mmap, but then a patched libpcap is required which is
not available yet.4 Another option is pf_ring. Its kernel module passes the incoming packets in a different way to the user
process.5

Requirements

• Kernel version prior to 3.10. 6

• All packages needed for building a kernel module, names are distribution-dependent

• A network interface which supports NAPI polling by its driver.

• optional: A network card which supports Direct Network Interface Card (NIC) access (DNA).7

Quick setup

Download PF_RING from a stable tar ball or development source at http://www.ntop.org/get-started/download/.
In order to build the code the following commands have to executed in a bash window:

cd PF_RING / k e r n e l
make && sudo make i n s t a l l
modprobe p f _ r i n g

Figure 1: building kernel module

Tranalyzer2 requires at least libpfring and libpcap-ring whic can be installed the following way:

cd PF_RING / u s e r l a n d
cd l i b
make && sudo make i n s t a l l
cd . .
cd l i b p c a p
make && sudo make i n s t a l l

Figure 2: basic userland

You may like to install other tools such as tcpdump. Just install it the same way as descirbed above.
NOTE: The pf_ring.ko is loaded having the transparent_mode=0 by default which enables NAPI polling. If you use a
card with special driver support for DNA you may want to compile the driver and load pf_ring.ko in a different mode.8

Load on boot

Since this seems to be difficult for many users the load procedure is described in the following.
Depending on your distribution or to be more specific, the init system your distribution uses at boot time may be some-
where different. In systemd 9 create a file with a .conf ending at /etc/modules-load.d/ which contains just the text pf_ring,

4See https://www.kernel.org/doc/Documentation/networking/packet_mmap.txt for more information
5See http://www.ntop.org/products/pf_ring/
6Presently when composing this document there is no patch for the depreciation of create_proc_read_entry() function. See: https://lkml.org/

lkml/2013/4/11/215
7documentation: http://www.ntop.org/products/pf_ring/DNA/
8See: man modprobe.d
9More info: http://www.freedesktop.org/wiki/Software/systemd/

2
Copyright c© 2013 by Tranalyzer Development Team

http://www.ntop.org/get-started/download/
https://www.kernel.org/doc/Documentation/networking/packet_mmap.txt
http://www.ntop.org/products/pf_ring/
https://lkml.org/lkml/2013/4/11/215
https://lkml.org/lkml/2013/4/11/215
http://www.ntop.org/products/pf_ring/DNA/
http://www.freedesktop.org/wiki/Software/systemd/

1.1 Installing Tranalyzer2 1 INTRODUCTION

the module name without the .ko ending.10

Ubuntu uses /etc/modules as a single file where you can add a line with the module name.11

sys temd
echo p f _ r i n g > / e t c / modules−l o a d . d / p f r i n g . con f
OR
ubun tu
echo p f _ r i n g >> / e t c / modules

Figure 3: on-boot kernel module load examples

New kernel

Once in a while there is indeed a new kernel available. If you want to use pf_ring afterwards do not forget to recompile
the kernel module, or set up dkms.

1.1.5 Supporting Scripts

The directory tranalyzer2/trunk/scripts contains useful scripts for post processing of tranalyzer output or compile support:

• convO3; Converts all plugins to optimization O3, default O2

• scnclean; Cleans a plugin directory of standard compiler files

• svncleanall; Cleans all compiler files under tranalyzer2/trunk

• svncleanrall; Cleans all files even your own plugins under tranalyzer/trunk

• fpsGplt; Transforms the packet signal output of nFirstPacketsStats plugin in flow file to gplot format

• protStat; Sorts proto file of protocolStatistics plugin according to biggest talkers

• statGplt; Transforms packet length , IAT statistics of packetSizeInterArrivalTimeHisto in flow file to gplot forma

• netwadd; Extracts from a standard flow file the ip Adresses and invokes whois requests (see warning in script)

• netw_1; Transforms list of ip adresses in cidr representation to whois answer record: for subnet file

10For more info: man modules-load.d
11See: man modules

3
Copyright c© 2013 by Tranalyzer Development Team

2 USING TRANALYZER2 IN A PRODUCTIVE ENVIRONMENT

2 Using Tranalyzer2 in a productive environment
Tranalyzer2 is designed in a modular way. Thus, the packet flow aggregation and the flow statistics are separated. While
the main program performs the header dissection and flow organisation, the plugins produce specialized output such as
packet statistics, mathematical transformations, signal analysis and result file generation.

2.1 Enabling/Disabling Plugins
If Tranalyzer2 is installed under /usr/local/bin, it is globally executable by all users. The plugins, however, are stored in
the user-dependent home folder and therefore individually tailored by the user. Upon program start, Tranalyzer2 checks
the directory .tranalyzer/plugins and invokes every existing plugin. In order to integrate a new plugin it only has to be
moved to the plugin folder. Removal from the folder deactivates a plugin12.

2.2 man page
You either use the install option when building Tranalyzer or gzip ./tranalyzer.1 under the Tranalyzer man directory,
e.g., /tranalyzer2/trunk/tranalyzer2/man and store the .gz file under /usr/share/man/man1. Then the man page will be
globally accessible. You also can invoke man ./tranalyzer.1 in the Tranalyzer man directory.

2.3 Invoking Tranalyzer
As being stated earlier Tranalyzer2 either operates on Ethernet/DAG interfaces or pcap files. It may be invoked using a
BPF if only certain flows are interesting. The required arguments are listed below. Note that the -i, -r and -R options
cannot be used at the same time.

2.3.1 -i INTERFACE

Capture data from an Ethernet interface INTERFACE. root privileges are required otherwise Tranalyzer will exit.

2.3.2 -r FILE

Capture data from a pcap file FILE.

2.3.3 -R FILE

Process the list of pcap files in textfile: FILE. All files are being treated as one large file. The life time of a flow can extend
over many files. The processing order is defined by the location of the filenames in the text file. The absolute path has to
be specified. A comment line is defined by a ‘#’ character.

2.3.4 -w PREFIX

Use a PREFIX for all output file types. The number of files being produced vary with the number of activated plugins.
The file suffixes are defined in the file tranalyzer.h (see Section 2.6.11) or in the header files for the plugins. If you
forget to specify an output file, Tranalyzer will use the input interface name or the file name as file prefix and print the
flows to stdout. Thus, tranalyzer output can be piped into other command line tools, such as netcat in order to produce
centralized logging to another host or an AWK script for further post processing without intermediate writing to a slow
disk storage.

2.3.5 -p FOLDER

Changes the plugin folder from standard .tranalyzer/plugins to FOLDER.

12Hint: A new folder inside the plugins directory is suitable to store unused plugins.

4
Copyright c© 2013 by Tranalyzer Development Team

2.4 Description of networkHeaders.h 2 USING TRANALYZER2 IN A PRODUCTIVE ENVIRONMENT

2.3.6 -s [BPF Filter]

Initiates the packet mode, where a file with the suffix _packets is created when the tcpFlags plugin is loaded. This
mode allows a deeper inspection of a specific flow in practise without using wire/t-shark or tcpdump. Thus a BPF filter
extracting the flow of interest is preferable. Generally a BPF filter is applied to extract the flow of interest from the flow file.
Each packet info is preceded by a Unix time stamp and the four tuple followed by the IPID, sequence/acknowledgement
numbers, packet length, flag info, window size and TCP options. The output format is formated in decimal or hex notation
for efficient application of Unix command line operators during the post-processing step. The timestamp is controlled by
the PKTFILE_DATE_TIME variable. If set to the default value 1, a human readable Date Time format is selected namely
for visual inspection. The standard Unix timestamp 0 is appropriate if extensive script postprocessing is necessary. A
tab separated header description line is printed only at the beginning of the packet file. The first two lines then read as
follows:
Time p k t I n t e r d i s Flow_Index E t h e r S r c _ E t h e r D s t s r c I P s r c P o r t d s t I P d s t p o r t p r o t o ipTOS ipID i p I D D i f f i p F r a g ipTTL

ipHdrChkSum ipCalChkSum L4HdrChkSum L4CalChkSum i p F l a g s pktLen ipOptLen i p O p t s seq ack s e q D i f f a c k D i f f SeqPktLen
ackPktLen t c p F l a g s S p e c i a l F l a g s tcpWin tcpOptLen t c p O p t s

1 4 : 2 4 : 4 9 . 7 5 1 9 5 0 0 .000000 1 0 0 : 1 3 : D4 : F3 :AB: DD_00 : 1 3 : D4 : F3 : A9 : 5 3 1 9 2 . 1 6 8 . 2 0 1 . 2 4 3 56151 1 9 2 . 1 6 8 . 2 0 1 . 2 4 2 51523 6 0x00 0x2E65 0 0
x4000 64 0xF71F 0xF71F 0x8FAD 0 x0000 0 x1840 0 0 0xB7EBA608 0 x00000000 0 0 0 0 0x02 0
x0000 5840 20 0x02 0x04 0x05 0xB4 0x04 0x02 0x08 0x0A 0x01 0x53 0x88 0x6D 0x00 0x00 0x51 0x00 0x00 0x00 0 x00 0x00

2.3.7 -e PCAPFILE

Denotes the filename and path of the esomfile when the pcapd plugin is loaded. The path and name of the pcapfile depends
on PCAPFILE. If omitted the default names for the PCAP file are defined in pcapd.h.

2.3.8 BPF Filter

A Berkeley Packet Filter (BPF) can be specified at any time in order to reduce the amount of flows being produced and to
increase speed during life capture ops. All rules of pcap BPF apply.

2.4 Description of networkHeaders.h
All header definitions are residing here. An important switch is also located here because every plugin and core program
has to import it. The switch IPV6_ACTIVATE == 1 or 0 controls the mode of operation on IP data. Either IPv6 or IPv4.
Later versions will have a dual mode.

2.5 Description of packetCapture.h
The config file packetCapture.h provides control about the packet capture and packet structure process of Tranalyzer2.
The most important fields are described below. Please note that after changing any value in define statements a rebuild is
required.

2.5.1 PACKETLENGTH

The PACKETLENGTH variable controls the packet length processing of all plugins. Valid values are described in the table
below:

Value Meaning
0 Packet length including L2, L3 and L4 header
1 Packet length including L3 and L4 header
2 Packet length including L4 header
3 Packet length == L7 payload (default)

5
Copyright c© 2013 by Tranalyzer Development Team

2.6 Description of tranalyzer.h 2 USING TRANALYZER2 IN A PRODUCTIVE ENVIRONMENT

2.5.2 FRGIPPKTLENVIEW

If fragmentation is present and FRGIPPKTLENVIEW is set to 1 the L3 headers of all packets following the first packet are
subtracted from the packet length. Hence, the total packet length of the whole fragmented packet stream is equal to the
reassembled packet length. See table below:

Value Meaning
0 IP header stays with 2nd++ fragmented packets
1 IP header stripped from 2nd++ fragmented packet

2.5.3 NOLAYER2

NOLAYER2 controls the automatic protocol dissection engine. If set to 1, manual mode is active and the user has to position
the pointer for the L3 header start by setting the NOL2_L3HDROFFSET switch to the appropriate offset value, e.g., 14. This
is useful if artificial traffic produced by tools with invalid header has to be analyzed. The possible values are described in
the table below:

Value Meaning
0 artificial traffic: 0: Automatic L3 header discovery on , 1: Manual L3 header positioning on
1 artificial traffic: if (NOLAYER2 == 1) offset of L3 header

2.5.4 MAXHDRCNT

MAXHDRCNT defines the maximal headers in IPv6 to be dissected. A later version will also have a value for IPv4. Default
is 5 but the minimal value has to be 3.

2.6 Description of tranalyzer.h
The config file tranalyzer.h provides abundant control over Tranalyzer2’s functionality. The most important fields are
described below. Please note that after changing any value in define statements a rebuild is required.

2.6.1 DEBUG

Activates debug output at console level for development purposes.

2.6.2 VERBOSE

Enables the verbose level if not equal to zero. Each level provides more elaborate information.

2.6.3 ENABLE_IO_BUFFERING

ENABLE_IO_BUFFERING = 1 activates an internal core plugin, a threaded buffer of size IO_BUFFER_SIZE . It buffers
the peak when capturing data from the interface. Default is 0. IO_BUFFER_QUEUE_FULL_WAIT_MICROSEC handles
the backpressure mechanism. More information s. section Plugins.

2.6.4 PACKETS_PER_BURST

Legacy functionality of Tranalyzer2 specifying the number of packets being processed by the pcap_dispatch routine
before the flow termination check is initiated. For a detailed explanation see the pcap man page. A value greater than 1
prevents the program from immediately checking for timed-out flows after each incoming packet. This is not a problem, as
long as there is no plugin activated that defines dependencies between flows. Nevertheless, this parameter should remain
at 1 and will be eventually removed.

2.6.5 FORCE_MODE

A 1 enables the force mode which enables any plugin to force the output of flows independent of the timeout value. Hence,
cisco netflow similar periodic output can be produced or overflows of counters can produce a flow and restart a new one.

6
Copyright c© 2013 by Tranalyzer Development Team

2.6 Description of tranalyzer.h 2 USING TRANALYZER2 IN A PRODUCTIVE ENVIRONMENT

2.6.6 ALARM_MODE

A 1 enables the alarm mode which differs from the default flow mode by the plugin based control of the tranalyzer core
flow output. It is useful for classification plugins generating alarms, thus emulating alarm based SW such as Snort, etc.
The default value is 0. The plugin sets the global output supress variable supOut = 1 in the onFlowTermination() function
before any output is generated. The core resets supOut so that if the classifier standard flow mode is established again.
This mode also allows multiple classification plugins producing an ored operation. A sampl code at the beginning of the
onFlowTermination() function is shown below:

i f ALARM_MODE == 1
i f (! Alarm) {

supOut = 1 ;
r e t u r n ;

}
e n d i f / / ALARM_MODE == 1

Figure 4: A sample code in the onFlowTermination routine

2.6.7 L2TP

A 1 activates the L2TP processing of the Tranalyzer2 core. All L2TP headers either encapsulated in MPLS or not will be
processed and followed down via PPP headers to the IP header and then passed to the IP processing. The default value of
the variable is 0. Then the stack will be parsed until the first IP header is detected. So all L2TP UDP headers having src
and dest port 1701 will be processed as normal UDP packets.

2.6.8 GRE

A 1 activates the L3 General Routing Encapsulation (L4proto=47) processing of the Tranalyzer2 core. All GRE headers
either encapsulated in MPLS or not will be processed and followed down via PPP headers to the IP header and then
passed to the IP processing. The default value of the variable is 0. Then the stack will be parsed until the first IP header
is detected. If the following content is not existing or compressed the flow will contain only L4proto = 47 information.

2.6.9 FRAGMENTATION

A 1 activates the fragmentation processing of the Tranalyzer2 core. All packets following the header packet will be
assembled in the same flow. The core and the plugin tcpFLags will provide special flags for fragmentation anomalies.
Please refer to tcpFlags plugin documentation below. If FRAGMENTATION is set to 0 only the initial fragment will be
processed; all later fragments will be ignored.

2.6.10 FRAG_HLST_CRFT

A 1 enables crafted packet processing even when the lead fragment is missing or packets contain senseless flags as being
used in attacks or equipment failure. The default value is 0.

2.6.11 FRAG_ERROR_DUMP

A 1 activates the dump of packet information on the command line for time based identification of ill-fated or crafted
fragments in tcpdump or wireshark. It provides the Unix timestamp, the six tuple, IPID and fragID as outlined in figure
below. The default value is 0.

WARNING: If FRAG_HLST_CRFT == 1 then every fragmented headerless packet will be reported!

7
Copyright c© 2013 by Tranalyzer Development Team

2.6 Description of tranalyzer.h 2 USING TRANALYZER2 IN A PRODUCTIVE ENVIRONMENT

1 . f r a g n o t found @ 1291753225.639627 20 8 6 . 5 1 . 1 8 . 2 4 3 17664 9 2 . 1 0 5 . 1 0 8 . 2 0 8 54 17
− 0x0DAE 0x00AC

1 . f r a g n o t found @ 1291753225.655378 20 9 2 . 1 0 4 . 1 8 1 . 1 5 4 17664 9 3 . 1 4 4 . 6 6 . 3 150 17
− 0 x1941 0x00A0

1 . f r a g n o t found @ 1291753225.825724 20 8 6 . 5 1 . 1 8 . 2 4 3 17664 9 2 . 1 0 5 . 1 0 8 . 2 0 8 54 17
− 0x0DC1 0x00AC

1 . f r a g n o t found @ 1291753225.850076 20 8 6 . 5 1 . 1 8 . 2 4 3 17664 9 2 . 1 0 5 . 1 0 8 . 2 0 8 54 17
− 0x0DC2 0x00AC

Figure 5: A sample report on stdout for packets with an elusive first fragment

2.6.12 *_SUFFIX

These fields define the suffix of all plugin output files. For example if you specify the output foo.foo (with the -w option),
the generated file for the per-packet output will be in the default setting foo.foo_packets.

2.6.13 FLOW_TIMEOUT

This field specifies the default time in seconds after which a flow will be considered as terminated since the last packet
is captured. Note: Plugins are able to change the timeout values of a flow. For example the tcpStates plugin adjusts the
timeout of a flow according to the TCP state machine.

2.6.14 HASHTABLE_SIZE

The number of buckets in the hash table. As a separate chaining hashing method is used, this value does not denote the
amount of elements the hash table is able to manage! The current default value is 240,000.

2.6.15 HASHCHAINTABLE_SIZE

Specifies the amount of flows the main hash table is able to manage. Detailed explanation of the hashing function is
available under http://en.wikipedia.org/wiki/Hash_tables#Separate_chaining. The default value is 120,000.

2.6.16 L2PROTO

Specifies the OSI layer 2 protocol of the network to be analyzed. The available protocols are listed below:

L2_ETHERNET Ethernet (Default)

2.6.17 Aggregation Mode

The aggregation mode enables the user to confine certain IP, port or protocol ranges into a single flow. The variable
AGGREGATIONFLAG in tranalyzer.h defines a bit field which enables specific aggregation modes according to the six tuple
values listed below.

Aggregation Flag: 8 Bit switch Hex Value
VLANID 0x20

SRCIP 0x10
DSTIP 0x08

SRCPORT 0x04
DSTPORT 0x02
L4PROT 0x01

if a certain aggregation mode is enabled the following variables in tranalyzer.h define the aggregation range.

8
Copyright c© 2013 by Tranalyzer Development Team

http://en.wikipedia.org/wiki/Hash_tables#Separate_chaining

2.7 Tranalyzer2 output 2 USING TRANALYZER2 IN A PRODUCTIVE ENVIRONMENT

Aggregation Flag: 8 Bit Var type Meaning
SRCIPMASKn uint32_t src IP aggregtion hex bit mask network order
DSTIPMASKn uint32_t dst IP aggregation hex bit mask network order
SRCPORTLW uint16_t src port lower bound
SRCPORTHW uint16_t src port upper bound
DSTPORTLW uint16_t dst port lower bound
DSTPORTHW uint16_t dst port upper bound

2.7 Tranalyzer2 output
As stated before, the functionality and output of Tranalyzer2 is defined by the activated plugins. Basically, there are two
ways a plugin can generate output. First, it can generate its own output file and write any arbitrary content into any stream.
The plugin is notified by an event as being described in Section 3.
The second way is called standard output or per-flow output. After flow termination Tranalyzer2 provides an output buffer
and appends the direction of the flow to it. For example, in case of textual output, an “A” flow is normally followed by
a “B” flow or if the “B” flow does not exist it is followed by the next “A” flow. Then, the output buffer is passed to the
plugins providing their per-flow output. Finally the buffer is sent to the activated output plugins. This process repeats
itself for the “B” flow. For detailed explanation about the functionality of the output plugins refer to the section plugins.

2.7.1 Hierarchical ordering of numerical or text output

Tranalyzer2 provides a hierarchical ordering of each output. Each plugin controls the:

• volume of its output

• number of values or bins

• hierarchical ordering of the data

• repetition of data substructures

Thus, complex structures such as lists or matrices can be presented in a single line.
The following sample of text output shows the hierarchical ordering for four data outputs, separated by tabulators:

A: 0 . 3 2 . 0 _3 . 4 _2 . 1 2 ; 4 ; 2 ; 1 (1 _2_9) _ (1 _3_1) _ (7 _5_3) _ (2 _3_7)

The A: indicates the direction of the flow; in this case it is the initial flow. The next number denotes a singular descriptive
statistical result. Output number two consists of three values separated by “_” characters. Output number three consists of
one value, that can be repeated, indicated by the character “;”. Output number four is a more complex example: It consists
of four values containing three subvalues indicated by the braces. This could be interpreted as a matrix of size 4x3.

9
Copyright c© 2013 by Tranalyzer Development Team

2.8 Final Report 2 USING TRANALYZER2 IN A PRODUCTIVE ENVIRONMENT

2.8 Final Report
Standard configuration of Tranalyzer2 produces a statistical report to stdout about timing, packets, protocol encapsulation
type, average bandwidth, dump length etc. A sample report including some current protocol relevant warnings is depicted
in the figure below. Warnings are not fatal hence are listed at the end of the statistical report when Tranalyzer2 terminates
naturally. The Average total Bandwidth estimation refers to the processed bandwidth during the data acquisition process.
It is only equivalent to the actual bandwidth if the total packet length including all encapsulations is not truncated and all
traffic is IP. The Average IP Traffic Bandwidth is an estimate comprising all IP traffic actually present on the wire.

==
T r a n a l y z e r 0 . 5 . 8 (A n t e a t e r) , b e t a . PID : 13199
==

P r e p a r i n g s n i f f i n g p r o c e s s . . .
A c t i v e p l u g i n s :

0 0 : p r o t o c o l S t a t i s t i c s , v e r s i o n 0 . 5 . 8
0 1 : bas i cF lowOutpu t , v e r s i o n 0 . 5 . 8
0 2 : macRecorder , v e r s i o n 0 . 5 . 8
0 3 : b a s i c L a y e r 4 C a l c S t a t i s t i c s , v e r s i o n 0 . 5 . 8
0 4 : t c p F l a g s , v e r s i o n 0 . 5 . 8
0 5 : t c p S t a t e s , v e r s i o n 0 . 5 . 8
0 6 : icmpDecode , v e r s i o n 0 . 5 . 8
0 7 : c o n n e c t i o n C o u n t e r , v e r s i o n 0 . 5 . 8
0 8 : t e x t F i l e S i n k , v e r s i o n 0 . 5 . 8

F i n i s h e d p r e p a r i n g s n i f f i n g .
S t a r t p r o c e s s i n g f i l e .
Dump s t a r t : 1291719781.988476 s e c : Tue 07 Dec 2010 1 2 : 0 3 : 0 1 . 9 8 8 4 7 6
Warning : S n a p l e n g t h : 1550 − SnapIpLeng th : 1484 − I p L e n g t h i n Header : 1492
ERROR: H a s h t a b l e f u l l ! I n c r e a s e s i z e o f HASHTABLE_BASE_SIZE &|

HASHCHAINTABLE_BASE_SIZE i n t r a n a l y z e r . h .
S h u t t i n g down T r a n a l y z e r 0 . 5 . 8 . . .
Dump s t o p : 1291720134.902460 s e c : Tue 07 Dec 2010 1 2 : 0 8 : 5 4 . 9 0 2 4 6 0
T o t a l dump d u r a t i o n : 352 .913984 s e c
Number o f p r o c e s s e d p a c k e t s : 18816351
Number o f p r o c e s s e d t r a f f i c b y t e s : 15037860212
Number o f IPv4 f r a g m e n t e d p a c k e t s : 34977
Number o f IPv6 f r a g m e n t e d p a c k e t s : 0
Number o f IPv4 p a c k e t s : 18815132
Number o f IPv6 p a c k e t s : 0
Number o f IPv4 f l o w s : 610883
Average t o t a l Bandwidth : 333119 .913 KBit / s
Average IP T r a f f i c Bandwidth : 713131 .423 KBit / s
Average f u l l raw Bandwidth : 732531 .261 KBit / s
Warning : Reduced snap l e n g t h
Warning : IPv4 F r a g m e n t a t i o n h e a d e r p a c k e t mis s ing , t r a i l i n g p a c k e t s i g n o r e d
Warning : VLAN e n c a p s u l a t i o n
Warning : MPLS e n c a p s u l a t i o n
Warning : L2TP e n c a p s u l a t i o n

Figure 6: A sample Tranalyzer2 final report including encapsulation warning and Hash table full error

Fatal errors regarding the invocation, configuration and operation of Tranalyzer2 are printed to stdout after the plugins
are loaded, thus before the processing is activated, see the Hash table error example in figure ? above. These errors

10
Copyright c© 2013 by Tranalyzer Development Team

2.9 Monitoring during runtime 2 USING TRANALYZER2 IN A PRODUCTIVE ENVIRONMENT

terminate Tranalyzer2 immediately and are located before the final statistical report as being indicated by the “Shutting
down ...” key phrase. If the final report is to be used in a following script a pipe can be appended and certain lines can be
filtered using grep or awk.

2.9 Monitoring during runtime
If debugging is deactivated or the verbose level is zero (see 2.6.1 and 2.6.2) Tranalyzer2 prints no status information.
Therefore an interrupt signal has been introduced to force intermediate status information to stdout. The appropriate Unix
command is:

k i l l −USR1 PID

It sends the signal USR1 to the process with the process ID PID. The ID of the current Tranalyzer2 process is printed on
the console at startup. Tranalyzer2 then supplies the following status information:

• Total number of processed packets

• Total number of processed flows

• Total number of bytes processed

If Tranalyzer2 is sniffing from an interface it also supplies the following additional information:

• Total number of received packets

• Total number of dropped packets by kernel and interface

If Tranalyzer2 processes a pcap file the following additional information is supplied:

• Total number of bytes to process

• Percentage completed

A verbose level not equal to zero enables the output of the number of free chains in the main hash map. An example
of a typical signal requested report is shown below:

==
Showing p r o g r e s s f o r T r a n a l y z e r 0 . 5 . 8 (A n t e a t e r) , b e t a . PID : 27903
C u r r e n t p r o c e s s e d p a c k e t s : 1197777
C u r r e n t p r o c e s s e d f l o w s : 50081
T o t a l b y t e s t o p r o c e s s : 1660496154
T o t a l b y t e s p r o c e s s e d so f a r : 1026276888
P e r c e n t a g e comple t ed : 61 .81
Warning : Reduced snap l e n g t h
Warning : IPv4 F r a g m e n t a t i o n
Warning : IPv4 F r a g m e n t a t i o n head p a c k e t mis s ing , t r a i l i n g p a c k e t s i g n o r e d
==

Figure 7: A sample Tranalyzer2 report after a kill signal

2.10 Cancellation of the sniffing process
Processing of a pcap file stops upon end of file. In case of life capture from an interface Tranalyzer2 stops upon CTRL+C
interrupt or a kill -9 PID signal. The disconnection of the interface cable will stop Tranalyzer2 also after a timeout
of 182 seconds. The console based CTRL+C interrupt does not immediately terminate the program to avoid corrupted
entries in the output files. It stops creating additional flows and finishes only currently active flows. Note that waiting the
termination of active flow depends on the activity or the lifetime of a connection and can take a very long time. In order
to mitigate that problem the user can issue the CTRL+C for PROCESS_SIGKILL_LEVEL_THRESHOLD times to immediately
terminate the program.

11
Copyright c© 2013 by Tranalyzer Development Team

3 PLUGINS

3 Plugins
This section gives a brief overview about every plugin being supplied. First both output plugins, namely standard file sink
and text file sink, are introduced and then the statistical plugins. Plugins marked with * are only build if the autogen_all.sh
script is executed (see 1.1.2). If a plugin provides options, they are defined in their specific header file. Note that after
changing an option the plugin needs to be recompiled with the custom autogen script.

3.1 Standard File Sink
3.1.1 Description

The standard file sink plugin is the basic output plugin for Tranalyzer2. It uses the output prefix to generate the standard
flow file with suffix _flows. All standard output from every plugin is stored in binary format in this file. For text
conversion tranalyzer-b2t (see 3.2) or Traviz, a graphical inspector http://traviz.sf.net) has to be utilized. A
compiled version of <em tranalyzer-b2t is placed in the plugins folder only if the Text File Sink plugin is compiled (see
3.2).

3.2 Text File Sink
3.2.1 Description

If only human readable text output is required the Text File Sink Plugin can be compiled instead of the Standard binary.
The text file sink prints a textual representation of all plugins results into a file with suffix _flows_txt. Each line in the
file represents one flow. The different output statistics of the plugins are separated by a tab character to provide better
post-processing with command line scripts or statistical toolsets.

3.2.2 Options

TEXT_FILE_SINK_PRINT_HEADER If non-zero, the plugin enables the printing of a header row at the beginning
of the output file. The row contains the short names of each output statistic separated by tabs.

TEXT_FILE_SINK_PRINT_HEADER_FILE If non-zero, the plugin generates a separate header file with suffix
_headers s. fig below. Each line in the file contains a detailed description of the output statistics: A consecutive index
number, the type and detailed description of the values.

3.3 binaryToText.h
binarytoText.h controls the conversion from internal binary format to standard text output. Historically Tranalyzer
only supported text output in a row based format. The Header file describes the columns of the flow file and data type
being used as indicated below for a case without special protocol output.

Due to the fact that most of the post analysis was conducted by the naked eye or with tools such as Bash AWK,
Perl, SPSS, Excel or LibreOffice, IP addresses were displayed in a normalized format: 172.029.222.085 facilitating
row and column based post processing. Nevertheless practice showed that for post processing with SQL host databases,
IDS correlation, nslookup or whois the standard IP format 172.29.222.85 is preferable. In the textFileSink directory the
headerfile binaryToText.h contains the variable IP_PRINT_NORMALIZE which controls the format of the IP address. It is
set to 0 by default due to a final practitioner vote.
When interpreting hex numbers, capital letters proved to be beneficial during our practical work. Nevertheless, there are
lingering questions by several parties whether small letter representation is more effective when searching and typing, etc.
In order to abolish future discussions about that matter the variable HEX_CAPITAL was introduced. Default value is 1, thus
capital representation.

3.3.1 tranalyzer-b2t

The plugin also supplies a program: tranalyzer-b2t (short for binary to text). It is a small console program that transforms
binary Tranalyzer files into column oriented text files. The text file is the same as being printed by the Text File Sink plugin.

12
Copyright c© 2013 by Tranalyzer Development Team

http://traviz.sf.net

3.4 Basic Flow Output 3 PLUGINS

Header f i l e f o r f low f i l e
/ home / h a r t w u r s t a d a p t e r / t r a n a l y z e r _ o u t p u t / s k y p e _ f l o w s _ t x t
Col No . Type Name
1 2 4 :NR Flow d i r e c t i o n
2 2 5 :NR System t ime of f i r s t p a c k e t
3 2 5 :NR System t ime of l a s t p a c k e t
4 2 6 :NR Flow d u r a t i o n
5 8 :NR VLAN ID
6 2 8 :NR Source IP a d d r e s s
7 8 :NR Subne t number o f s o u r c e IP
8 8 :NR Source p o r t
9 2 8 :NR D e s t i n a t i o n IP a d d r e s s
10 8 :NR Subne t number o f d e s t i n a t i o n IP
11 8 :NR D e s t i n a t i o n p o r t
12 7 :NR Layer 4 p r o t o c o l
13 2 7 , 2 7 , 1 0 :R Source MAC a d d r e s s , d e s t i n a t i o n MAC a d d r e s s , number o f

p a c k e t s seen wi th t h i s MAC a d d r e s s c o m b i n a t i o n
14 2 3 :NR P o r t based c l a s s i f i c a t i o n o f t h e d e s t i n a t i o n p o r t
15 . . .

Figure 8: A sample header file showing the columns of the plugins Basic Flow Output, MAC Recorder and Port-based
Classifier. The first column shows the column number of the statistic, the second the type of values inside the statistic and
if these values can be repeated (R) or not (NR). The third column contains the description of the column.

The program is stored under the plugins folder. For more information about its operation invoke the program without any
arguments.

3.4 Basic Flow Output
3.4.1 Description

The basic flow output plugin writes host identification fields and timing information into the standard flow output file. All
compiler switches controlling the output of the BasicFlowOutput plugin are defined in the file basicFlowOutput.h. In
detail, the following fields are supplied to the flow output file if all compiler switches are activated:

13
Copyright c© 2013 by Tranalyzer Development Team

3.4 Basic Flow Output 3 PLUGINS

Column Meaning
1 Flow: Flow Direction A: / B:
2 Flow: Flow Index (Optional)
3 Flow: Flow Status Bit Field (Optional)
4 Flow: Time stamp of packet being captured first [Date-time or unix time]
5 Flow: Time stamp of packet being captured last [Date-time or unix time]
6 Flow: Duration of the flow [unix time]
7 Flow: VLAN number [inner VLAN or all headers in HEX] (Optional)
8 Flow: MPLS header [HEX or Detail view] (Optional)
9 Flow: PPP header (Optional)

10 Flow: GRE header
11 Flow: GRE source IP address
12 Flow: GRE Src IP(4/6), several output modes controlled by textFileSink.h (Optional)
13 Flow: GRE Src IP Subnet Label [Decimal or Hex] (Optional)
14 Flow: GRE Dst IPv(4/6), several output modes controlled by textFileSink.h (Optional)
15 Flow: GRE Dst IP Subnet Label [Decimal or Hex] (Optional)
16 Flow: L2TP header (Optional)
17 Flow: L2TP TID (Optional)
18 Flow: L2TP SID (Optional)
19 Flow: L2TP Src IP(4/6), several output modes controlled by textFileSink.h (Optional)
20 Flow: L2TP Src IP Subnet Label [Decimal or Hex] (Optional)
21 Flow: L2TP Dst IPv(4/6), several output modes controlled by textFileSink.h (Optional)
22 Flow: L2TP Dst IP Subnet Label [Decimal or Hex] (Optional)
23 Flow: Src IPv(4/6), several output modes controlled by textFileSink.h
24 Flow: Src IP Subnet Label [Decimal or Hex] (Optional)
25 Flow: Src Port
26 Flow: Dst IPv(4/6), several output modes controlled by textFileSink.h
27 Flow: Dst IP Subnet Label [Decimal or Hex] (Optional)
28 Flow: Dst Port
29 Flow: Layer 4 protocol

All fields which do not exist in a flow will be displayed as a 0 in decimal or hex respectively. Note: subnet labeling is
currently only available in IPv4 mode.

3.4.2 Time Stamps

Time stamps are controlled by the flag BASICFLOWOUTPUT_DATE_TIME. If set to 1 a human readable date time format
is selected, being also the default value, because visual inspection of flow files seems to be the preferred method of our
users. Nevertheless, I am using the standard Unix Timestamp mode = 0, because it is more appropriate for the script based
postprocessing of large files.

3.4.3 Flow Index Output

If the flag BASICFLOWOUTPUT_FLOWINDEX is set to 1 a unique flow identification column is added. It is useful to identify
flows when post processing operations, such as sort or filters are applied to a flow file and only a B: or an A: flow is
selected. Moreover a packet file generated with the -s option supplies the flow index which simplifies the mapping of
singular packets to the appropriate flow. The default value is 1.

3.4.4 Flow Status Output

If the flag BASICFLOWOUTPUT_FLOW_STATUS is set to 1 a 32 bit long status word is supplied in the 2nd column of each
flow. The default value is 0. The bit position is outlined below:

14
Copyright c© 2013 by Tranalyzer Development Team

3.4 Basic Flow Output 3 PLUGINS

Bitfield Meaning
20 (=0x00000001) Dump: Warning Flag: L2 Snaplength too short; Flow: Invert Flow, not client flow
21 (=0x00000002) Dump/flow: L3 Snaplength too short
22 (=0x00000004) Dump/flow: L2 header length too short
23 (=0x00000008) Dump/flow: L3 header length too short
24 (=0x00000010) Dump: Warning: IP Fragmentation Detected
25 (=0x00000020) Flow: ERROR: Severe Fragmentation Error
26 (=0x00000040) Flow: ERROR: Fragmentation Header Sequence Error
27 (=0x00000080) Flow ERROR: Fragmentation Pending at end of flow
28 (=0x00000100) Flow/Dump: Warning: PPPoE_D detected
29 (=0x00000200) Flow/Dump: Warning: PPPoE_S detected
210 (=0x00000400) Flow/Dump: Warning: LLDP detected
211 (=0x00000800) Flow/Dump: Warning: ARP detected
212 (=0x00001000) Flow/Dump: Warning: reverse ARP detected
213 (=0x00002000) Flow/Dump: Warning: VLAN(s) detected
214 (=0x00004000) Flow/Dump: Warning: MPLS unicast detected
215 (=0x00008000) Flow/Dump: Warning: MPLS multicast detected
216 (=0x00010000) Flow/Dump: Warning: L2TP detected
217 (=0x00020000) Flow/Dump: Warning: GRE detected
218 (=0x00040000) Flow/Dump: Warning: PPP detected
219 (=0x00080000) Flow/Dump: 0/1: IPv4/IPv6 detected
220 (=0x00100000) Flow/Dump: -
221 (=0x00200000) Flow/Dump: -
222 (=0x00400000) Flow/Dump: -
223 (=0x00800000) Flow/Dump: -
224 (=0x01000000) Flow/Dump: -
225 (=0x02000000) Flow/Dump: -
226 (=0x04000000) Flow/Dump: -
227 (=0x08000000) Flow/Dump: -
228 (=0x10000000) Flow/Dump: PPPL3 header not readable, compressed
229 (=0x20000000) Flow/Dump: -
230 (=0x40000000) Flow/Dump: Warning: Land Attack detected
231 (=0x80000000) Flow/Dump: Warning: Time Jump

3.4.5 Subnet detection

If the flag BASICFLOWOUTPUT_SUBNET_TEST or BASICFLOWOUTPUT_SUBNET_TEST_L2TP is enabled source and destina-
tion IP of the IP packet or the encapsulating L2TP packet stack will be marked according to their membership to a defined
set of subnets. This definition is supplied in a user defined file subnet.txt residing in the plugin folder. If no subnet file
exists in the .tranalyzer/plugin folder a sample file will be automatically created. It can be edited where each line contains
the subnet and network mask as being outlined below in case of decimal labeling:

Subne t / msk User d e f i n e d member n e t
P r i v a t e Address Space 1−3
1 0 . 0 . 0 . 0 / 8 1
1 7 2 . 1 6 . 0 . 0 / 1 2 1
1 9 2 . 1 6 8 . 0 . 0 / 1 6 1
e x t e r n 4 − 5
6 2 . 2 0 2 . 0 . 0 / 1 5 2
8 1 . 6 2 . 0 . 0 / 1 5 2

If the variable NETWORKLABELLING equals 0 in the subnet.h file, the subnet number in the flow file is defined by the
position of the subnet in the subnet file starting with one. A zero value in the flow file denotes the fact that the IP does not

15
Copyright c© 2013 by Tranalyzer Development Team

3.4 Basic Flow Output 3 PLUGINS

match any subnet. In case of NETWORKLABELLING = 1 the user defined membership numbers are assigned to the subnet
number in the flow file. If the variable NETWORK_HEXLABEL equals 1 the user defined membership numbers are interpreted
as a 32 bit hex number, thus a bit wise meaning can be assigned to address spaces, such as country, city, industry or degree
of evil. The default was originally 0, but was changed to default 1 as we use it that way. If you are a decimal guy just
switch it back to 0 and run ./autogen.sh under the plugin directory.

3.4.6 Script netwadd

The script netwadd in the trunk/scripts folder extracts from a flows_txt file all networks in CIDR notation by invoking
with the following parameters:

./netwadd path/filename_flow_txt > waurich
By applying the following command sequence a draft subnet file is created:
sort -k 2 waurich | uniq > subnet.txt
All networks are now sorted according to the network owner. This output can be used to build a customized subnet file
with a user defined labeling.

3.4.7 Ether Type

If the flag BASICFLOWOUTPUT_ETHERTYPE is activated a column is added to the flow file describing all relevant Ether Type
charactersitics of the L2 part of the packet, such as 8021Q VLAN encapsulation including VLAN nesting. The variable
BASICFLOWOUTPUT_ETHERTYPE_HEX controls the output format. A 1 prints the plain hex 32 bit Ether Types, while 0
represents the default case, decimal VLAN Identifiers separated by semicolons if nesting is present.

3.4.8 MPLS

If the flag BASICFLOWOUTPUT_MPLS is set to 1, a column is added to the flow file describing the MPLS headers. The
BASICFLOWOUTPUT_MPLS_DETAIL controls the output format. If set to 1 the MPLS headers will be decoded and displayed
as decimals separated by underlines:
Label1_ToS1_S1_TTL1;textbfLabel2_ToS2_S2_TTL2;...
otherwise the raw 32 bit MPLS headers are printed, also separated by semicolons. Default is 0 for both compiler switches,
as most of the common users do not use MPLS, unless Tranalyzer2 issues a warning in its final report. If you are working
for an operator you might need it.

3.4.9 L2TP

If the flag BASICFLOWOUTPUT_L2TP is set to 1 a column is added to the flow file describing relevant L2TP and preceding
IP header contents as being listed below:

L2TP Variable Description
Header Flags and version header bit field
Tunnel ID Tunnel ID of 1. packet
Session ID Session ID of 1. packet
Source IP address Source Addr of preceding IP header
Destination IP address Destination Addr of preceding IP header

Operator encapsuation. In normal inhouse traffic not needed, unless Tranalyzer2 issues a warning in its final report.
Default is set to 0.

3.4.10 GRE

If the flag BASICFLOWOUTPUT_GRE is set to 1 a column is added to the flow file describing relevant GRE and preceding IP
header contents as being described below:

GRE Variable Description
GRE Header 32Bit, Flags, version and following protocol
Source IP address Source Addr of preceding IP header
Destination IP address Destination Addr of preceding IP header

16
Copyright c© 2013 by Tranalyzer Development Team

3.5 Basic Layer 4 Statistics 3 PLUGINS

Operator encapsulation. In normal in-house traffic not needed, unless Tranalyzer2 issues a warning in its final report.
Default is set to 0.

3.4.11 PPP

If the switch BASICFLOWOUTPUT_PPP is set to 1 a PPP header column is added to the flow file. Default is 0. If you are
working for an operator it comes in handy.

3.5 Basic Layer 4 Statistics
3.5.1 Description

It supplies basic layer four statistics for each flow. The following fields are written to the PREFIX_flows file:

Column Meaning
1 Flow: Number of packets being transmitted
2 Flow: Number of packets being received
3 Flow: Number of bytes being transmitted
4 Flow: Number of bytes being received
5 Flow: Minimum packet length (optional)
6 Flow: Maximum packet length (optional)
7 Flow: Average packet size (optional)
8 Flow: Packets per second (optional)
9 Flow: Bytes per second (optional)
10 Flow: Packet Asymmetry (optional)
11 Flow: Byte Asymmetry (optional)

The variable BASIC_PKT_STATS in basicLayer4Statistics.h controls the calculation and output of the basic statistics
features 5 - 11. If set to 0 a rapid assessments of dumps is possible without statistics info. The default is set to 1.

3.6 TCP Flags
3.6.1 Description

This plugin contains IP and TCP Header information encountered during the lifetime of a flow. All features are a result
of practical troubleshooting experience in the field. Features can be selected when setting the following key values in
tcpFlags.h:

Variable Default Description
SPKTFILE_KEY_VALUE 0 -s option: 0: description in 1. line of flow file, 1: Key value pairs
RTT_ESTIMATE 1 1: Round trip time estimation
IPCHECKSUM 2 1: Calculation of L3 (IP) Header Checksum,

2: L3/L4 (TCP,UDP,ICMP,IGMP, ...) Checksum
WINDOWSIZE 0 1: Calculation of tcp window size parameters
SEQ_ACK_NUM 0: 1: Sequence/Acknowledge Number features
FRAG_ANALYZE 1 1: Fragmentation analysis enabled, 0: Fragmentation analysis off

Using the default setting above the following columns are provided below. The round trip measurements are stored
in their respective flow direction A: or B:, also in order to save memory. If all swiches are engaged then the following
columns are added to the flow file.

17
Copyright c© 2013 by Tranalyzer Development Team

3.6 TCP Flags 3 PLUGINS

Column Meaning
1 IP: IPv4: Minimum Delta IPID
2 IP: IPv4: Maximum Delta IPID
3 IP: Minimum TTL
4 IP: Maximum TTL
5 IP: TTL Min/Max Change Count
6 IP IPv4:TOS Byte, IPv6: Traffic Class
7 IP: Header flags
8 IP: IPv4/6: 8 and 32 Bit Options Field [2Copy-Class]_[2Number]
9 IP: Options count

10 TCP: Packet Sequence Count
12 TCP: Sent Bytes, Agg. Difference of Sequence Numbers
13 TCP: Sequence Number retry count
14 TCP: Packet Ack Count
15 TCP: Sent Bytes, Aggregated difference of Ack Numbers
16 TCP: Ack Number retry count
17 TCP: Initial tcp effective window size
18 TCP: Average effective window size
19 TCP: Minimum effective window size
20 TCP: Maximum effective window size
21 TCP: Effective window size change down count
22 TCP: Effective window size change up count
23 TCP: Effective window size directional change count
24 TCP: Aggregated TCP protocol flags
25 TCP: Aggregated header anomaly flags
26 TCP: 32 Bit Options Field [2Type], s.
27 TCP: Maximum Segment Size
28 TCP: Windows Scale
29 TCP: Options count
30 TCP: Packet Initial TCP Trip Time A: Syn, Syn-Ack | B: Syn-Ack, Ack
31 TCP: Packet Initial TCP Round Trip Time A: Syn, Syn-Ack, Ack | B: RTT Average|
32 TCP: Packet TCP Ack Trip Minimum A: | B:
33 TCP: Packet TCP Ack Trip Maximum A: | B:
34 TCP: Packet TCP Ack Trip Average A: | B:

3.6.2 Window Size Features

The window size features are experimental. Practice showed that some of them were useful as anomaly detection for
several congestion problems especially where a host is the cause. The effective window size is calculated as follows:
Windowsize ·2WS

The average window size is calculated by a first order IIR butterworth filter giving an indication about the potential
throughput of a connection. Minimum and maximum window size in combination with average window size indi-
cate also potential throughput problems. In combination with the Window Size up down counts type the quality of
the regulation algorithm and problems on the host side can be assessed. The directional change count detects erratic
behavior of a channel. More experiments and practical troubleshooting cases will indeed reveal an improvement of
the listed features. Proposals are more than welcome, please submit to the Sourceforge Feature Requests mailing list:
http://sourceforge.net/projects/tranalyzer/support.

3.6.3 Aggregated IP header flags

The meaning of the aggregated IP header flags bitfield is the following:

18
Copyright c© 2013 by Tranalyzer Development Team

http://sourceforge.net/projects/tranalyzer/support

3.7 Aggregated TCP Anomaly Flags 3 PLUGINS

Bitfield Meaning
20 (=0x0001) IP Options present, s. IP Options Type Bit field
21 (=0x0002) IPID out of order
22 (=0x0004) IPID rollover
23 (=0x0008) Fragmentation: Below expected RFC minimum fragment size: 576
24 (=0x0010) Fragmentation: Warning fragments out of range (Possible tear drop attack)
25 (=0x0020) Fragmentation: MF Flag
26 (=0x0040) Fragmentation: DF Flag
27 (=0x0080) Fragmentation: x Reserved flag bit from IP Header
28 (=0x0100) Fragmentation: Unexpected position of fragment
29 (=0x0200) Fragmentation: Unexpected sequence of fragment
210 (=0x0400) L3 Checksum Error
211 (=0x0800) L4 Checksum Error
212 (=0x1000) SnapLength Warning: IP Packet truncated, L4 Checksums invalid
213 (=0x2000) Packet Interdistance == 0
214 (=0x4000) Packet Interdistance < 0
215 (=0x8000) State Bit for interdistance assessment

3.6.4 IP Options Type Bit Field

The aggregated IP options are coded as a bit field in hexadecimal notation where the bit position denotes the IP options
type according to following format: [2Copy-Class]_[2Number]. If the field reads: 0x10_0x00100000 in an ICMP message it
is a 0x94 = 148 router alert.
Refer to RFC for decoding the bit field : http://www.iana.org/assignments/ip-parameters.

3.6.5 Aggregated TCP protocol flags

The meaning of the aggregated TCP protocol flags bitfield is the following:

Bitfield Flag Meaning
20 (=0x01) FIN No more data, finish connection
21 (=0x02) SYN Synchronize sequence numbers
22 (=0x04) RST Reset connection
23 (=0x08) PSH Push data
24 (=0x10) ACK Acknowledgement field value valid
25 (=0x20) URG Urgent pointer valid
26 (=0x40) ECE ECN-Echo
27 (=0x80) CWR Congestion Window Reduced flag is set

3.6.6 Example

If the TCP Flags column contains the value 0x1B all flags except the urgent- and the push flag where recognized in the
flow.

3.7 Aggregated TCP Anomaly Flags
Description: The TCP Flags Plugin supplies a 16 Bit word containing information about anomalous Layer 3/4 behavior
of a TCP flow. It proved to be useful in practical network security or troubleshooting cases of large IT infrastructures. In
combination with the TCP Flag the correct initiation or completion of a TCP Handshake is also retracable. In combination
with packets and bytes transmitted or received key values routing problems can easily be detected.

19
Copyright c© 2013 by Tranalyzer Development Team

http://www.iana.org/assignments/ip-parameters

3.8 TCP States Analyzer 3 PLUGINS

Bitfield Meaning
20 (=0x0001) Fin-Ack Flag
21 (=0x0002) Syn-Ack Flag
22 (=0x0004) Rst-Ack Flag
23 (=0x0008) Syn-Fin Flag, Scan or malicious packet
24 (=0x0010) Syn-Fin-Rst Flag, potential malicious scan packet or malicious channel
24 (=0x0020) Fin-Rst Flag, abnormal flow termination
25 (=0x0040) Null Flag, potential NULL scan packet, or malicious channel
26 (=0x0080) XMas Flag, potential Xmas scan packet, or malicious channel
28 (=0x0100) Due to packet loss, Sequence Number Retry, retransmit
29 (=0x0200) Sequence Number out of order
210 (=0x0400) Sequence mess in flow order due to pcap pkt loss
211 (=0x0800) Warning: L4 Option field corrupt or not acquired
212 (=0x1000) Syn retransmission
213 (=0x2000) Ack number out of order
214 (=0x4000) Ack Packet loss, probably on the sniffing interface
215 (=0x8000) Last state of TCP Window State Machine

3.7.1 TCP Options Type Bit Field

The aggregated TCP Options are coded as a bit field in a 32 bit hexadecimal notation where the bit position denotes
the TCP options type according to following format: [2TCP Options Type]. So if option type 0, 2 and 8 is encountered the
resulting value will read 0x00000105. Refer to RFC for decoding the bit field: http://www.iana.org/assignments/
tcp-parameters/tcp-parameters.xml.

3.7.2 Example

A prominent example is the routing problem by misconfiguration: Anomaly flag shows 0xXX03 with Flags 0x1A indicating
perfect data exchange but the received byte count and packet count are zero. Either the return traffic is not captured and/or
a routing anomaly exists, such as the traffic returns via an unknown gateway. This was an actual case resolving a firewall
misconfiguration combined with unexpected OSPF actions in a large company network.

3.8 TCP States Analyzer
3.8.1 Description

This plugin tracks the actual state of a TCP connection. To do so, it analyzes the flags being set in the packet header. If
the plugin recognizes non-compliant behavior, it sets a bit in a so-called bogus bitfield. The definition of the bogus bit
field is defined below:

Bitfield Meaning
20 (=0x01) Malformed connection establishment
21 (=0x02) Malformed teardown
22 (=0x04) Malformed flags during established connection
23 (=0x08) Packets detected after teardown
24 (=0x10) NA
25 (=0x20) NA
26 (=0x40) Reset from sender
27 (=0x80) Potential evil behavior

The TCP States Analyzer plugin also changes the timeout values of a flow according to its recognized state:

20
Copyright c© 2013 by Tranalyzer Development Team

http://www.iana.org/assignments/tcp-parameters/tcp-parameters.xml
http://www.iana.org/assignments/tcp-parameters/tcp-parameters.xml

3.9 ICMP Decoder 3 PLUGINS

State Meaning Timeout in seconds
New Three way handshake is encountered 120

Established Connection established 610
Closing Hosts are about to close the connection 120
Closed Connection closed 10
Reset Connection reset encountered by one of hosts 0.1

3.8.2 Differences to the host TCP state machines

The plugin state machine and the state machines usually implemented in hosts differ in some cases. Major differences
are caused by the benevolence of the plugin. For example, if a connection has not been established in a correct way, the
plugin treats the connection as established, but sets the malformed connection establishment flag. The reasons for this
benevolence are the following:

• A flow might have been started before invocation of Tranalyzer2.

• A flow did not finish before Tranalyzer2 terminated.

• Tranalyzer2 did not detect every packet of a connection, for example due to a router misconfiguration.

• Flows from malicious programs may show suspicious behavior.

• Packets may be lost after being captured by Tranalyzer2 but before they reached the opposite host.

3.9 ICMP Decoder
3.9.1 Description

It analyzes ICMP traffic and provides absolute and relative statistics to the PREFIX_icmpStats file. In detail, as an
example for IPv4 ICMP traffic, fields with the following meaning will be supplied:

Type Subtype Meaning
ICMP_ECHOREQUEST - Echo request
ICMP_ECHOREPLY - Echo reply to an echo request
ICMP_SOURCE_QUENCH - Source quenches
ICMP_TRACEROUTE - Host trace route
ICMP_DEST_UNREACH ICMP_NET_UNREACH Network unreachable
ICMP_DEST_UNREACH ICMP_HOST_UNREACH Host unreachable
ICMP_DEST_UNREACH ICMP_PROT_UNREACH Protocol unreachable
ICMP_DEST_UNREACH ICMP_PORT_UNREACH Port unreachable
ICMP_DEST_UNREACH ICMP_FRAG_NEEDED Fragmentation needed
ICMP_DEST_UNREACH ICMP_SR_FAILED Source route failed
ICMP_DEST_UNREACH ICMP_NET_UNKNOWN Network unknown
ICMP_DEST_UNREACH ICMP_HOST_UNKNOWN Host unknown
ICMP_DEST_UNREACH ICMP_HOST_ISOLATED Host is isolated
ICMP_DEST_UNREACH ICMP_NET_ANO Network annotation
ICMP_DEST_UNREACH ICMP_HOST_ANO Host annotation
ICMP_DEST_UNREACH ICMP_NET_UNR_TOS Unreachable type of network service
ICMP_DEST_UNREACH ICMP_HOST_UNR_TOS Unreachable type of host service
ICMP_DEST_UNREACH ICMP_PKT_FILTERED Dropped by a filtering device
ICMP_DEST_UNREACH ICMP_PREC_VIOLATION Precedence violation
ICMP_DEST_UNREACH ICMP_PREC_CUTOFF Precedence cut off
ICMP_REDIRECT ICMP_REDIR_NET Network redirection
ICMP_REDIRECT ICMP_REDIR_HOST Host redirection
ICMP_REDIRECT ICMP_REDIR_NETTOS Network type of service
ICMP_REDIRECT ICMP_REDIR_HOSTTOS Host type of service
ICMP_TRACEROUTE - Traceroute packets

21
Copyright c© 2013 by Tranalyzer Development Team

3.9 ICMP Decoder 3 PLUGINS

Figure 9: The state machine of the TCP State Analyzer plugin. For better readability the connection establishment and
teardown recognition are substituted each by a summarizing arrow. Also the recognition of malicious behavior is not
being shown.

22
Copyright c© 2013 by Tranalyzer Development Team

3.10 Connection Counter 3 PLUGINS

ICMPv6 provides a similar output when IPV6_ACTIVATE == 1 is selected. For each flow two columns called Aggre-
gated ICMP Type & Code bit Field and icmpERSuccRate are appended in the PREFIX_flows file output of this plugin.
The icmpERSuccRate indicates the success of an ICMP echo reply process and is defined by the following values:

icmpERSuccRate Meaning
Negative value No ICMP traffic in flow
Positive value Percentage of ICMP echo replies to echo requests
Zero (Null) ICMP requests being captured but no replies detected

The aggregated ICMP Code and Type Bit field is supplied in 16 and 32 bit hexadecimal notation using the following
format: [2ICMP Code]_[2ICMP Type]. The bit position denotes the ICMP type or code information.

3.10 Connection Counter
Description: Records the number of connections at the termination of a flow:
The first value is the number of connections from the source IP to different destination hosts, the second denotes the same
for the destination host. The third value describes the number of connections between source and destination host.

3.11 Descriptive Statistics *
3.11.1 Description

Calculates various statistics about a flow. If the packet length statistics output is enabled in the descriptiveStatistics.h file
the following key values are supplied in the flow file:

Column Statistics
01 Minimum packet length
02 Maximum packet length
03 Mean packet length
04 Lower quartile of packet lengths
05 Median of packet lengths
06 Upper quartile of packet lengths
07 Inter quartile distance (IQD) of packet lengths
08 Mode of packet lengths = The most occurring packet length
09 Standard deviation (stddev) of packet lengths
10 Robust standard deviation of packet lengths = minimum of stddev and 0.7413 * IQD
11 Skewness of packet lengths
12 Excess of packet lengths

If the inter-arrival time statistics output is enabled the following key values are supplied:

Column Statistics
01 Minimum inter-arrival time
02 Maximum inter-arrival time
03 Mean inter-arrival time
04 Lower quartile of inter-arrival times
05 Median of inter-arrival times
06 Upper quartile of inter-arrival times
07 Inter quartile distance (IQD) of inter-arrival times
08 Mode of inter-arrival times = The most occurring inter-arrival time
09 Standard deviation (stddev) of inter-arrival times
10 Robust standard deviation of inter-arrival times = minimum of stddev and 0.7413 * IQD
11 Skewness of inter-arrival times
12 Excess of inter-arrival times

Because the inter-arrival time of the first packet is per definition always zero, it is removed from the statistics. Therefore
the inter-arrival time statistics values for flows with only one packet is set to zero.

23
Copyright c© 2013 by Tranalyzer Development Team

3.12 N First Packet Signal * 3 PLUGINS

3.11.2 (De)Activation of flow based output

The output for the packet length and inter-arrival time statistics can be enabled and disabled via the switches ENABLE_
PACKETSIZE_CALCULATION and ENABLE_IAT_CALCULATION in the descriptiveStatistics.h header file. If these values are
changed, the user has to rebuild the plugin using the autogen.sh script in the root folder of the plugin.

3.11.3 Dependencies

The descriptive statistics plugin makes use of the structures in the packet length inter-arrival time histo plugin. Therefore,
the packet length inter-arrival time histogram plugin has to be activated.

3.11.4 Known issues

Because the packet length and inter-arrival time plugin stores the inter-arrival times in statistical bins the original time
information is lost. Therefore the calculation of the inter-arrival times statistics is due to its logarithmic binning only
a rough approximation of the original timing information. Nevertheless, this representation has shown to be useful in
practical cases of anomaly and application classification.

3.12 N First Packet Signal *
This plugin supplies the PL and IAT of the N first packets per flow as columns in the PREFIX_flows file. This represen-
tation has shown to be useful in fast and efficient application classification. Useful values of N are in the range of 8 to 30,
the default value is 20. The output in the PREFIX_protocols file is the following:

[PL packet 1]_[IAT packet 1];[PL packet 2]_[IAT packet 2]; ... ;[PL packet N]_[IAT packet N]

3.12.1 Gnuplot/Excel/SPSS support

By invoking the script fpsGplt under trunk/scripts files are generated for the packet signal in a Gnuplot/Excel/SPSS
readable column oriented format. The format is shown below:

PL IAT absolute time

3.13 Packet Length and Inter-Arrival Time Histogram *
3.13.1 Description

This plugin records the PL and IAT of a flow. While the PL is precise the IAT is divided by default into 91 statistical bins:

Bin Range of IAT
0 – 39 0 ms (incl.) – 200 ms (excl.), partitioned into bins of 5 ms

40 – 59 200 ms (incl.) – 400 ms (excl.), partitioned into bins of 10 ms
60 – 89 400 ms (incl.) – 1 sec. (excl.), partitioned into bins of 20 ms

90 for all IAT higher than 1 sec.

Classifying tasks may require other IAT binning. Then the bin limit IATBINBu and the binsize IATBINWu constants in
packetSizeInterArrivalTimeHisto.h need to be adapted as being indicated below using 5 different classes of bins:
d e f i n e IATBINBu1 50 / / b i n boundary o f s e c t i o n one : [0 , 50) ms
d e f i n e IATBINBu2 200
d e f i n e IATBINBu3 1000
d e f i n e IATBINBu4 10000
d e f i n e IATBINBu5 100000

d e f i n e IATBINWu1 1 / / b i n wid th 1ms
d e f i n e IATBINWu2 5
d e f i n e IATBINWu3 10
d e f i n e IATBINWu4 20
d e f i n e IATBINWu5 50

d e f i n e IATBINNu1 IATBINBu1 / IATBINWu1 / / # o f b i n s i n s e c t i o n one
d e f i n e IATBINNu2 (IATBINBu2 − IATBINBu1) / IATBINWu2 + IATBINNu1
d e f i n e IATBINNu3 (IATBINBu3 − IATBINBu2) / IATBINWu3 + IATBINNu2
d e f i n e IATBINNu4 (IATBINBu4 − IATBINBu3) / IATBINWu4 + IATBINNu3
d e f i n e IATBINNu5 (IATBINBu5 − IATBINBu4) / IATBINWu5 + IATBINNu4

d e f i n e IATSECMAX 5 / / max # of s e c t i o n i n s t a t i s t i c s , l a s t s e c t i o n c o m p r i s e s a l l e l e m e n t s > IATBINBu4

24
Copyright c© 2013 by Tranalyzer Development Team

3.13 Packet Length and Inter-Arrival Time Histogram * 3 PLUGINS

/ / d e f i n i t i o n o f b i n c o u n t f i e l d s
c o n s t u i n t 3 2 _ t IATBinBu [IATSECMAX+1] = { 0 , IATBINBu1 , IATBINBu2 , IATBINBu3 , IATBINBu4 , IATBINBu5 } ;
c o n s t u i n t 3 2 _ t IATBinWu [IATSECMAX] = { IATBINWu1 , IATBINWu2 , IATBINWu3 , IATBINWu4 , IATBINWu5 } ;
c o n s t u i n t 3 2 _ t IATBinNu [IATSECMAX+1] = { 0 , IATBINNu1 , IATBINNu2 , IATBINNu3 , IATBINNu4 , IATBINNu5 } ;

The number of bin sections is defined by IATSECMAX, default is 3. The static fields IATBinBu and IATBinWu need
to be adapted when IATSECMAX is changed. The static definition in curly brackets of the constant fields IATBinBu[],
IATBinBu[] and IATBinBu[] must adapted as well to the maximal bin size. The constant IATBINUMAX including his two
dimensional packet length, IAT statistics is being used by the descriptive statistics plugin and can suit as a raw input for
subsequent statistical classifiers, such as Bayesian networks or C5.0 trees.

3.13.2 Output format

All PL-IAT bins greater than zero are appended for each flow in the PREFIX_flows file using the following format:

[ps]_[IAT]_[# packets]_[# of packets PL]_[# of packets IAT]

the PL-IAT bins are separated by semicolons. The IAT value is the lower bound of the IAT range of a bin.

3.13.3 Example for PL-IAT distributions

Consider a single flow with the following PL and IAT values:

Packet number PL (bytes) IAT (ms) IAT bin
1 50 0 0
2 70 88.2 17
3 70 84.3 16
4 70 92.9 18
5 70 87.1 17
6 60 91.6 18

Packet number two and five have the same PL-IAT combination. Packets number two to five have the same PL and
number two and five as well as the number four and six fall within the same IAT bin. Therefore the following sequence is
generated:

50_0_1_1_1 ; 60_90_1_1_2 ; 70_80_1_4_1 ; 70_85_2_4_2 ; 70_90_1_4_2

Note that for better readability spaces are inserted around the semicolons which will not exist in the text based flow file!

3.13.4 Customizing the PL-IAT distribution output

The user is able to customize the output by changing several define statements in the header file packetSizeInterArrival-
TimeHisto.h. Every change requires a recompilation of the plugin using the autogen.sh script.
HISTO_PRINT_BIN == 0, the default case, selects the number of the IAT bin, while 1 supplies the lower bound of the IAT
bin’s range.
As being outlined in the Descriptive Statistics plugin the output of the plugin can be suppressed by defining PRINT_HISTO
to zero.
For specific applications in the AI regime, the distribution can be directed into a separate file if the value PRINT_HISTO_IN
_SEPARATE_FILE is different from zero. The suffix for the distribution file is defined by the HISTO_FILE_SUFFIX define.

3.13.5 Gnuplot/Excel/SPSS support

By invoking the script statGplt under trunk/scripts files are generated for the 2/3 dim statistics in a Gnuplot/Excel/SPSS
column oriented format. The format is shown below:

For the 3 D case:

PL IAT count

and for the 2 D case:

PL count

25
Copyright c© 2013 by Tranalyzer Development Team

3.14 MAC Recorder * 3 PLUGINS

3.14 MAC Recorder *
3.14.1 Description

The Mac Recorder plugin provides the source- and destination MAC address as well as the number of packets detected
in the flow separated by an underscore (“_”). If there is more than one combination of MAC addresses e.g. due to load
balancing or router misconfiguration, the plugin prints all recognized Mac addresses separated by semicolons.

3.14.2 Example

Consider a host with MAC address AA:AA:AA:AA in a local network requesting a website from a public server. Due to
load balancing the opposite flow can be split and transmitted via two routers with MAC addresses BB:BB:BB:BB and
CC:CC:CC:CC. The MAC Recorder plugin then produces the following output:

BB:BB:BB:BB_AA:AA:AA:AA_667;CC:CC:CC:CC_AA:AA:AA:AA_666

3.15 Port-based Classifier *
This plugin classifies the flow according to the destination port meaning. It accepts a default port list portmap.txt in
/.tranalyzer/plugin in the user’s home directory. If tt ./autogen.sh is invoked in the plugin’s root folder for the first time a
default port.txt file is copied to the plugin folder.

3.16 Protocol Statistics *
Provides protocol/port sorted frequency statistics about the observed OSI layer 4 protocols and ports to the file named
PREFIX_protocols. Protocols numbers are decoded via a proto.txt file. In order to identify the biggest talkers the
script protStat is supplied which produces lists sorted according to the occurrence of the protocol and port feature. If
./autogen.sh is invoked in the plugin’s root folder for the first time a default proto.txt file is copied to the plugin
folder.

3.17 I/O Buffer
This plugin buffers pcap data either from an interface or a file up to IO_BUFFER_SIZE elements, thus being able to hold
MAX_MTU bytes per packet. It serves as an intermittent storage for traffic bursts in case of processor or bus overload.
Although the I/O Buffer Plugin uses a different thread no multicore CPU is required to produce a higher performance
because the program is I/O bound, thus file or interface operations are considerable longer than CPU time.
Note: The I/O Buffer Plugin is an internal plugin that can be enabled or disabled in tranalyzer.h by changing the define
value: ENABLE_IO_BUFFERING.

26
Copyright c© 2013 by Tranalyzer Development Team

4 CREATING A CUSTOM PLUGIN

4 Creating a custom plugin
A plugin is a shared library file comprising of special functionality. Tranalyzer2 dynamically loads these shared libraries
at runtime from the .tranalyzer/plugins directory in the user’s home folder. Therefore Tranalyzer2 is available for users
if being installed in the /usr/local/bin directory while the plugins are user dependent. To develop a plugin it is strongly
recommended that the user utilizes our special “skeleton” plugin. It is available via SVN from the Tranalyzer repository.
This skeleton contains a header and source file comprising of all mandatory and optional functions as well as a small
HOWTO file and a script to build and move a shared library to the plugins folder.

4.1 Preparation
Usage of the skeleton plugin requires the main folder of the Tranalyzer source files to be located in the same folder as
the main folder of the skeleton. Also the tools automake and libtool must be installed. Further directions concerning the
configure.ac and the Makefile.am are located in the HOWTO file.

4.2 Accessible structures
Due to practical reasons all plugins are able to access every structure of the main program and the other plugins. This is
indeed a security risk, but since Tranalyzer2 is a tool for practitioners and scientists in access limited environments the
maximum possible freedom of the programmer is more important for us.

4.2.1 Accessible structures under Mac OS X

When you write a plugin which should run also under Mac OS X you will realize that it handles global variables in a
different way than Linux. To access a global variable from the main program or the other plugins you have to write
your own getter or use the existing once. For examples see basicFlowOutput, a for a plugin dependency example see
descriptiveStatistics.

4.3 Important structures
A predominant structure in the main program is the flow table flow where the six tuple for the flow lookup timing in-
formation is stored as well as a pointer to a possible opposite flow. A plugin can access this structure by including the
packetCapture.h header. For more information please refer to the header file.
Another important structure is the main output buffer mainOutputBuffer. This structure holds all standard output of
activated plugins whenever a flow is terminated. The main output buffer is accessible if the plugin includes the header file
main.h.

4.4 Generating output
As mentioned in Section 2.7 there are two ways to generate output. The first is the case where a plugin just writes its
arbitrary output into its own file, the second is writing flow-based information to a standard output file. We are now
discussing the later case.
The standard output file generated by the Standard File sink plugin consists of a header, a delimiter and values. The header
is generated using header information provided by each plugin, that writes output into the standard output file. During the
initialization phase of the sniffing process, the core calls the printHeader() functions of these plugins. These functions
return a single structure or a list of structures of type binary_value_t. Each structure represents a statistic. To provide a
mechanism for hierarchical ordering, the statistic itself may contain one ore more values and one or more substructures.
The structure contains the following fields:

27
Copyright c© 2013 by Tranalyzer Development Team

4.4 Generating output 4 CREATING A CUSTOM PLUGIN

Field name Field type Explanation
num_values uint32_t Amount of values in the statistic
subval binary_subvalue_t* Type definition of the values
name_value_short char[128] Short definition of the statistic
name_value_long char[1024] Long definition of the statistic
is_repeating uint32_t one, if the statistic is repeating, zero otherwise
next binary_value_t* used if the plugin provides more than one statistics

The substructure binary_subvalue_t is used to describe the values of the statistic. For each value, one substructure
is required. For example, if num_values is two, two substructures have to be allocated. The substructures must be
implemented as a continuous array consisting of the following fields:

Field name Field type Explanation
value_type uint32_t Type of the value
num_values uint32_t Amount of values in the statistic
subval binary_subvalue_t* Definition of the values
is_repeating uint32_t one, Statstic is repeating, zero otherwise

Compared to the binary_value_t representation two strings are omitted in the statistic’s short and long description
and the *next pointer but it contains a new field, the value type. Possible values for this new field are described in the
enumeration binary_types defined in the header file binaryValue.h. If the field contains a value greater than zero the
fields num_values and subval are ignored. They are needed if a subval contains itself subvalues. To indicate additional
subvalues, the field value_type need to be set to zero. The mechanism is the same as for the binary_value_t.

The field is_repeating should be used if the number of values inside a statistic is variable; e.g. a statistic of a vector
with variable length; see 3.12).

4.4.1 Examples

The following examples illustrate the usage of the said two structures:

Example 1: Two Statistics each containing a single value If a plugin’s output is consisting of two statistics each
having a single value it needs to pass a list containing two structures of type binary_value_t. Both structures contain a
substructure with the type of the single values. The following diagram shows the relationships between all four structures:

Example 2: A statistic composed of two values Now the output of the plugin is again two statistics, but the first
statistic consists of two values; e.g. to describe a position on a grid. Therefore num_values is two and subval* points
to a memory field of size two-times struct binary_subvalue_t. The subvalues themselves contain again the type of the
statistic’s values. Note: These values do not need to be identical.

28
Copyright c© 2013 by Tranalyzer Development Team

4.4 Generating output 4 CREATING A CUSTOM PLUGIN

Example 3: A statistic containing a complete matrix With the ability to define subvalues in subvalues it is possible
to store multidimensional structures such as matrices. The following example illustrates the definition of a matrix of size
three times two:

4.4.2 Helper functions

In order to avoid filling the structures by hand a small API is located in the header file binaryValue.h doing all the nity
gritty work for the programmer. The therefor important four functions are described below.

binary_value_t* bv_append_bv(binary_value_t* dest, binary_value_t* new)
Appends a binary_value_t struct at the end of a list of binary_value_t structures and returns a pointer to the start of the
list.

Arguments:

29
Copyright c© 2013 by Tranalyzer Development Team

4.4 Generating output 4 CREATING A CUSTOM PLUGIN

Type Name Explanation
binary_value_t* dest The pointer to the start of the list
binary_value_t* new The pointer to the new binary_value_t structure

binary_value_t* bv_new_bv (char* name_long, char* name_short, uint32_t is_repeating,
uint32_t num_values...)

Generates a new structure of type binary_value_t and returns a pointer to it

Arguments:

Type Name Explanation
char* name_long a long name for the statistic
char* name_short a short name for the statistic
uint32_t is_repeating one, if the statistic is repeating, zero otherwise
uint32_t num_values the number of values for the statistic
int . . . the types of the statistical values, repated num_values-times

The function creates a binary_value_t structure and sets the values. In addition, it creates an array field with num_values
binary_subvalue_t structures and fills the value types provided in the variable argument list.

Example: The call bv_new_bv(“Statistic vector”, “stat_vec”, 2, 0, bt_uint_64, bt_uint_64) creates
the following structures:

binary_value_t* bv_add_sv_to_bv (binary_value_t* dest, uint32_t pos,
uint32_t is_repeating, uint32_t num_values, ...)

Replaces a subvalue in a binary_value_t structure with a new substructure that contains additional substructures and
returns a pointer to the parent binary value.

Arguments:

Type Name Explanation
binary_value_t* dest the pointer to the parent binary value
uint32_t pos the position of the substructure to be replaced, starting at 0
uint32_t is_repeating one, if the subvalue is repeating, zero otherwise
uint32_t num_values the number of values in the subvalue
int ... the types of the statistical values, repated num_values-times

This function is only valid if dest is already a complete statistic containing all necessary structures.

30
Copyright c© 2013 by Tranalyzer Development Team

4.4 Generating output 4 CREATING A CUSTOM PLUGIN

Example: Let dest be a pointer to the binary_value_t structure from the example above. A call to the function
bv_add_sv_to_bv(dest, 1, 0, 2, bt_uint_64, bt_uint_64) replaces the second substructure with a new sub-
structure containing two more substructures:

binary_value_t* bv_add_sv_to_sv (binary_subvalue_t* dest, uint32_t pos,
uint32_t is_repeating, uint32_t num_values, ...)

Replaces a subvalue in a binary_subvalue_t structure with a new substructure that contains additional substructures
and returns a pointer to the parent binary subvalue.

Arguments:

Type Name Explanation
binary_subvalue_t* dest Pointer to the parent binary subvalue
uint32_t pos Position of the substructure to be replaced, starting at 0
uint32_t is_repeating one, if the subvalue is repeating, zero otherwise
uint32_t num_values Number of values in the subvalue
int ... Types of the statistical values, repeated num_values-times

31
Copyright c© 2013 by Tranalyzer Development Team

4.4 Generating output 4 CREATING A CUSTOM PLUGIN

For all hierarchical deeper located structures than above the function described above is required.

Example: Let dest be a pointer to the subvalue structure being replaced in the example above. A call to the func-
tion bv_add_sv_to_sv(dest, 0, 0, 2, bt_uint_64, bt_uint_64) replaces dest’s first the substructure with a new
substructure containing two more substructures:

4.4.3 Writing into the standard output

Standard output is generated using a buffer structure. Upon the event onFlowTerminate (see 4.8.7) Plugins write all out-
put into this buffer. It is strongly recommended using the function outputBuffer_append(outputBuffer_t* buffer,
char* output, size_t size_of_output).
Arguments:

Type Name Explanation
outputBuffer_t* buffer the pointer to the standard output buffer structure, for standard

output, this is main_output_buffer
char* output a pointer to the output, currently of type char
size_t size_of_output the length of field output in single bytes

The output buffer is send to the output sinks after all plugins have stored their information.

32
Copyright c© 2013 by Tranalyzer Development Team

4.5 Writing repeated output 4 CREATING A CUSTOM PLUGIN

Example: If a plugin wants to write two statistics each with a single value of type uint64_t it first has to commit its
binary_value_t structure(s) (see section above). During the call of its onFlowTerminate() function the plugin writes
both statistical values using the append function:

o u t p u t b u f f e r _ a p p e n d (m a i n _ o u t p u t _ b u f f e r , (c h a r ∗) va lue1 , 4) ;
o u t p u t b u f f e r _ a p p e n d (m a i n _ o u t p u t _ b u f f e r , (c h a r ∗) va lue2 , 4) ;

where value1 and value2 are two pointers to the statistical values.

4.5 Writing repeated output
If a statistic could be repeated (field is_repeating is one) the plugin has first to store the number of values as uint32_t
value into the buffer. Afterwards, it appends the values.

Example: A plugin’s output is a vector of variable length, the values are of type uint16_t. For the current flow, that
is terminated in the function onFlowTerminate(), there are three values to write. The plugin first writes a field of type
uint32_t with value three into the buffer, using the append function:

o u t p u t b u f f e r _ a p p e n d (m a i n _ o u t p u t _ b u f f e r , (c h a r ∗) numOfValues , s i z e o f (u i n t 3 2 _ t)) ;

Afterwards, it writes the tree values.

4.6 Important notes
• IP addresses (bt_ip4_addr or bt_ip6_addr) or MAC addresses (bt_mac_addr) are stored in network order.

• Strings are of variable length and need to be stored with a trailing zero bit (’\0’).

4.7 Administrative functions
Every plugin has to provide five administrative functions. The first four are mandatory while the last is optional. Their
existence is checked during the plugin initialization phase one and two:

Function name Return type Explanation
get_plugin_name() char* a unique name of the plugin, not

necessarilythe filename. All characters
except the comma is allowed.

get_plugin_version() char* a version number, usually a dot separated
3 tupel (x.y.z)

get_supported_tranalyzer_version_major() unsigned int The minimum major version number of
the main program being supported by
the plugin

get_supported_tranalyzer_version_minor() unsigned int The minimum minor version number in
combination with the minimum major
version number of the main program
being supported by the plugin

get_dependencies() char* if exists, the plugin loader checks the
avalability of the plugin names returned
by this function. The plugin names have
to be separated by a comma. White
spaces, tabs or any other characters are
not treated as name separators.

33
Copyright c© 2013 by Tranalyzer Development Team

4.8 Processing functions 4 CREATING A CUSTOM PLUGIN

Figure 10: Processing of the plugin loading mechanism

4.8 Processing functions
During flow analysis Tranalyzer2 generates several events based on the status of the program, the inspected OSI layer of
the current packet or the status of the current flow. These events consist of specific function calls provided by the plugins.
The implementation of the event functions is dependent on the required action of a plugin to be carried out upon a certain
event.

4.8.1 Event: initialize()

Event / function name Return type Parameters
initialize void —

The initialize event is generated before the program activates the packet capturing phase. After Tranalyzer2 has
initialized its internal structures it grants the same phase to the plugins. Therefore temporary values should be allocated
during that event by using a C malloc.

4.8.2 Event: printHeader()

Event / function name Return type Parameters
printHeader binary_value_t* —

This event is also generated during the initialization phase. With this event the plugin providing data to the standard
output file signals the core what type of output they want to write (see 4.4). The function returns a pointer to the generated
binary_value_t structure or to the start pointer of a list of generated binary_value_t structures.

4.8.3 Event: onFlowGenerated()

Event / function name Return type Parameters
onFlowGenerated void packet_t *packet, unsigned long flowIndex

34
Copyright c© 2013 by Tranalyzer Development Team

4.8 Processing functions 4 CREATING A CUSTOM PLUGIN

This event is generated every time Tranalyzer2 recognizes a new flow not present in the flow table. The first parameter is
the currently processed packet, the second denotes the new generated flow index. As long as the flow is not terminated
the flow index is valid. After flow termination the flow number is reintegrated into a list for later reuse.

4.8.4 Event: claimLayer2Information()

Event / function name Return type Parameters
claimLayer2Information void packet_t *packet

This event is generated for every new packet comprising of a valid and supported layer two header, e.g. Ethernet as
default. This is the first event generated after libpcap dispatches a packet and before a lookup in the flow table happened.
At this very point in time no tests are conducted for higher layer headers. If a plugin tries to access higher layer structures
it has to test itself if they are present or not. Otherwise, at non-presence of higher layers an unchecked access can result
in a NULL pointer access and therefore in a possible segmentation fault! We recommend using the subsequent two events
to access higher layers.

4.8.5 Event: claimLayer3Information()

Event / function name Return type Parameters
claimLayer3Information void packet_t *packet

This event is generated for every new packet comprising of a valid and supported layer three header. The currently sup-
ported layer three headers are IP and IP encapsulated in a variable number of VLAN headers. The event is generated after
the claimLayer2Information event and before a lookup in the flow table is performed. Again, no tests are conducted
for higher layer headers. If a plugin tries to access higher layer structures it has to test their existence. If not present an
unchecked access can result in a NULL pointer access and therefore in a possible segmentation fault! We recommend using
the subsequent event to access higher layers.

4.8.6 Event: claimLayer4Information()

Event / function name Return type Parameters
claimLayer4Information void packet_t *packet, unsigned long flowIndex

This event is generated for every new packet containing a valid and supported layer four header. The current supported
layer four headers are TCP, UDP and ICMP. This event is called after Tranalyzer2 performs a lookup in its flow table and
eventually generates an onFlowGenerated event. Implementation of other protocols such as IPsec or OSPF are planned.

4.8.7 Event: onFlowTerminate()

Event / function name Return type Parameters
onFlowTerminate void unsigned long flowIndex

This event is generated every time Tranalyzer2 removes a flow from its active status either due to timeout or protocol
normal or abnormal termination. Only during this event, the plugins write output to the standard output.

4.8.8 Event: onApplicationTerminate()

Event / function name Return type Parameters
onFlowTerminate void —

This event is generated shortly before the program is terminated. At this time no more packets or flows are processed.
This event enables the plugins to do memory housekeeping, stream buffer flushing or printing of final statistics.

35
Copyright c© 2013 by Tranalyzer Development Team

4.9 Timeout handlers 4 CREATING A CUSTOM PLUGIN

4.8.9 Event: bufferToSink()

Event / function name Return type Parameters
bufferToSink void outputBuffer* buffer

The Tranalyzer core generates this event immediately after the onFlowTerminate event with the main output buffer as
parameter. A plugin listening to this event is able to write this buffer to a data sink. For example the standard file sink
plugin pushes the output into the PREFIX_flows file.

Figure 11: Tranalyzer packet processing and event generation.

4.9 Timeout handlers
A flow is terminated after a certain timeout being defined by so called timeout handlers. The default timeout value for a
flow is 182 seconds. The plugins are able to access and change this value. For example, the TCP States plugin changes
the value according to different connection states of a TCP flow.

36
Copyright c© 2013 by Tranalyzer Development Team

4.9 Timeout handlers 4 CREATING A CUSTOM PLUGIN

4.9.1 Registering a new timeout handler

To register a new timeout handler, a plugin has to call the function timeout_handler_add(float timeout_in_sec.
The argument is the new timeout value in seconds. Now the plugin is authorized by the core to change the timeout of a
flow to the registered timeout value. Without registering a timeout handler the test is unreliable.

4.9.2 Programming convention and hints

• A call of timeout_handler_add should only happen during the initialization function of the plugin.

• Registering the same timeout value twice is no factor.

• Registering timeout values in fractions of seconds is possible, see TCP States plugin.

37
Copyright c© 2013 by Tranalyzer Development Team

5 CODE SEGMENTS

5 Code segments

5.1 main.c
The main.c file is the core file of Tranalyzer2. It initializes and prepares the program for execution, manages flow lists
and data integrity.

5.1.1 Function main()

It is responsible for validating the application’s parameter, signal capture and mainLoop start.

5.1.2 Function mainLoop()

The function mainLoop() contains the loop being executed as long as data is available or until the termination KILL signal
is received. In either case the variable running will be set to zero in order to signal program termination.
All active flows are linked by a last recently used list, denoted as LRU list. The most recent flow is located at the beginning
of the list after the lruHead position, whereas the oldest flow is located at the tail of the list before the lruTail position.
Whenever a new packet is captured the corresponding flow will be moved to the beginning of the LRU list after the
lruHead position. After having processed PACKETS_PER_BURST packets from the source, the LRU list is traversed twice:
The list is processed from tail to head in order to terminate and remove flows being either in time-out or not being
successfully terminated; e.g. due to a TCP Reset.
In both cases the traversal will be aborted when the specified case does not apply anymore.

5.1.3 Function removeFlow()

Removes the flow given as argument to the function as well as its opposite flow from the hashtable and from the LRU list.

5.1.4 Function lruFlowPrintout()

Takes the variable lruPointer as input and decides whether lruPointer or its opposite flow is the flow initiator. Even-
tually calls the appropriate output function.

5.1.5 Function printFlow()

Calls each plugin’s function pluginOnFlowTerminate twice: The first time for the forward flow and the second time for
its reverse flow.

5.1.6 Function prepareSniffing()

Initializes variables and calls the function pluginInitialize for each available plugin. It also opens files in write mode
‘w’ and initializes the pcap library.

5.1.7 Function copy_argv()

Parses the remaining arguments to the application as BPF filter, which then filters packets matching the defined pattern.

5.1.8 Function printUsage()

Prints the usage text to standard output.

5.1.9 Function terminate()

Terminates the application. Flushes all buffers and closes the pcap library and all files still being open.

5.1.10 Function catchInterrupt()

The function that is executed upon receiving either SIGINT or SIGTERM. Currently prepares the application for termination.

38
Copyright c© 2013 by Tranalyzer Development Team

5.2 packetCapture.c 5 CODE SEGMENTS

5.1.11 Function userInterrupt()

The function that is executed upon receiving either SIGUSR1 or SIGUSR2 prints various information such as file processing
progress, run time, etc.

5.1.12 Function timevalSubtract()

Substracts the timeval y from the timeval x and returns the result by value.

5.2 packetCapture.c
5.2.1 Function perPacketCallback()

The function perPacketCallback() is called with each packet that does not match the specified BPF filter. The packet
traverses all specified OSI layer analysis sections from one to seven. Currently only layer two, three and four are imple-
mented being associated to either a new flow or an existing flow. During the traversal phase the flow is updated with every
new information being gathered from the packet headers.

5.2.2 Function flowCreate()

Creates a new flow comprising of all available header information of the first packet. The generated flow is also inserted
into the hashtable and LRU list. When an opposite flow is detected, a link will be created between both flows. For each
active plugin the function pluginOnFlowGenerated is called.

5.2.3 Function updateLRUList()

This function moves a flow supplied as argument to the beginning of the LRU list, thus after the position lruHead.

39
Copyright c© 2013 by Tranalyzer Development Team

6 GLOSSARY

6 Glossary
Name Description
Flow A distinct packet stream from a source host to a destination host

40
Copyright c© 2013 by Tranalyzer Development Team

	Introduction
	Installing Tranalyzer2

	Using Tranalyzer2 in a productive environment
	Enabling/Disabling Plugins
	man page
	Invoking Tranalyzer
	Description of networkHeaders.h
	Description of packetCapture.h
	Description of tranalyzer.h
	Tranalyzer2 output
	Final Report
	Monitoring during runtime
	Cancellation of the sniffing process

	Plugins
	Standard File Sink
	Text File Sink
	binaryToText.h
	Basic Flow Output
	Basic Layer 4 Statistics
	TCP Flags
	Aggregated TCP Anomaly Flags
	TCP States Analyzer
	ICMP Decoder
	Connection Counter
	Descriptive Statistics *
	N First Packet Signal *
	Packet Length and Inter-Arrival Time Histogram *
	MAC Recorder *
	Port-based Classifier *
	Protocol Statistics *
	I/O Buffer

	Creating a custom plugin
	Preparation
	Accessible structures
	Important structures
	Generating output
	Writing repeated output
	Important notes
	Administrative functions
	Processing functions
	Timeout handlers

	Code segments
	main.c
	packetCapture.c

	Glossary

